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Detecting phase synchronization in noisy data from coupled chaotic oscillators
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Two schemes are proposed to detect phase synchronization from chaotic data contaminated by noise. The
first is a neighborhood-based method which links time delay embedding with instantaneous phase estimation.
The second adopts the local projection method as a preprocessing filter to noisy data. Both schemes utilize the
state recurrence, an important feature of chaotic data. The proposed schemes are applied to data measured from
two typical chaotic systems, i.e., the coupled Rossler systems and the coupled Lorenz systems, respectively.
The results show that phase synchronization, which may be buried by noise, is detected even when the noise
level is high. Moreover, the overestimation of the degree of phase synchronization, which may be introduced
by the Hilbert transform combined with a traditional linear bandpass filter, can be avoided when the data are

contaminated by only measurement noise.
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I. INTRODUCTION

Synchronization, a ubiquitous phenomenon in both natu-
ral and engineering systems, has been studied extensively in
the past years for its numerous applications in various fields
(for a review, cf. [1]). Phase synchronization, as a weak form
of synchronization, has been observed in various systems,
such as coupled chaotic oscillators [2,3], chaotic laser array
[4], biomedical signals [5], and neuronal oscillations [6,7].
Various phase definitions have been introduced. One class of
them is based on particular transforms, such as the Hilbert
transform [2], the wavelet transform [8], and a generalized
transform with a Gaussian filter [4], to the measured data.
Another class of phases is defined as the angle of evolving
trajectory, which is reconstructed from the two-dimensional
projection of the system [1,9] or the time derivative of the
projection [3,10], around a fixed point.

For particular data (e.g., data from coherent Rossler sys-
tems), an instantaneous phase can be directly obtained with
the Hilbert transform [2]. If the data are contaminated by
measurement noise, the phase so estimated will involve arti-
ficial phase slips, i.e., the discontinuous “jumps” of the un-
wrapped phase, which do not imply any intrinsic oscillation
but are due to noise. For this case, a linear filter with narrow
bandwidth is usually first applied to the noisy data, and then
phase is estimated from the output of the filter. However, on
the one hand, the linear filter with narrow bandwidth may
lead to a spurious overestimation of the actual degree of
phase synchronization [11]; on the other hand, the linear fil-
ter with broad bandwidth will leave a certain amount of in-
traband noise, and thus cannot suppress the effect of noise
effectively. Recently, a data-driven filter has been proposed
[12]. It is argued that this filter can reduce the noise-induced
susceptibility of the estimated phase.

Some other methods have also been proposed to detect
(phase) synchronization in noisy data. For example, surro-
gate data methods are applied to provide significance tests of
phase synchronization in noisy data [13], where both the
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noisy data and their surrogate data are passed through a lin-
ear filter first. However, it is reported that weak synchroni-
zation may be artificially detected even from two indepen-
dent and identically distributed Gaussian noise series after
narrow bandwidth filtering [11]. So surrogates also suffer
from the effect of linear filtering and should be used care-
fully. Nonlinear interdependence is proposed to characterize
the degree of generalized synchronization, utilizing the mu-
tual neighbors and the feature that similar initials lead to
similar successors in the evolving chaotic system [14-16].
The performances of various synchronization measures, in-
cluding nonlinear interdependence, mutual information, and
phase based on both the Hilbert transform and wavelet trans-
form, are compared with real electroencephalographic (EEG)
data. It shows that these measures can indicate a similar ten-
dency in the degree of synchronization [17]. Further, these
measures are tested with data (from typical coupled chaotic
systems) which are contaminated by measurement noise. Re-
sults show that these measures work effectively when the
noise level is low, but can be greatly degraded when the
noise level is relatively high [18]. Tt is difficult to say which
measure is the best in general. Recently, a statistical measure
of recurrences is proposed to detect phase synchronization,
and is robust for measurement noise [3]. After that, a general
framework is proposed to detect phase synchronization
through localized sets rather than defining the instantaneous
phase straightforward [ 19]. This framework can be applied to
oscillators with multiple time scale (e.g., spiking and/or
bursting neurons). However, whether it is robust to noise or
not is (as far as we are aware) not reported yet. Moreover,
these two methods can only quantify the degree of synchro-
nization in the mean.

To overcome the limitations discussed above, two
schemes are proposed to estimate the instantaneous phase for
noisy chaotic data from the viewpoint of time delay embed-
ding. State recurrence, an important feature of chaotic sys-
tems, is utilized. In phase space reconstructed by time delay
embedding [20], the state recurrences of a reference vector
turn out to be its nearest neighbors. These neighbors can
provide redundant information [21] and have been success-
fully utilized in chaotic time series analysis and processing,
such as prediction [22], time-frequency analysis [21], detec-
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tion of state transitions [23], and noise reduction (the local
projection method) [24-29].

The first scheme is a neighborhood-based phase estima-
tion (NPE) method. The reference vector and its nearest
neighbors (i.e., state recurrences) cover segments of data
with a similar wave form [21]. This implies that the analyti-
cal trajectories (constructed with the Hilbert transform [2])
corresponding to the reference vector and its neighbors are
close to each other in the Hilbert plane, as will be illustrated
later. With this observation, the instantaneous phase of noisy
data is estimated by a certain averaging of the corresponding
instantaneous phase of the neighbors. The second scheme
uses the local projection (LP) method, instead of the tradi-
tional linear bandpass filter, as a preprocessing filter to noisy
data. Then the instantaneous phase can be obtained with the
Hilbert transform after noise reduction. Simulation results
show that the instantaneous phase estimated by both pro-
posed schemes suffers much less from the artificial phase
slips, and thus phase synchronization (both in local time and
in whole time), which may otherwise be buried by measure-
ment noise, is successfully detected.

The organization of this paper is as follows. In Sec. II, the
relationship between the nearest neighbors and their corre-
sponding analytical trajectories is demonstrated, and then the
principle of NPE is proposed. Further, the LP method is
briefly reviewed. In Sec. III, the proposed schemes are ap-
plied to data measured from both coupled Rdossler systems
and coupled Lorenz systems, respectively. Finally, conclu-
sions and discussions are given in Sec. IV.

II. PRINCIPLE OF THE METHODS
A. Neighborhood-based phase estimation

The most popular definition of instantaneous phase is
based on the Hilbert transform. The analytic signal of s(z) is
defined as

s = (1) + j5(1) = A, (1

where 5(¢) is the Hilbert transform of s(z),

(1) = ip f R )

a4

(here P means that the integral is taken in the sense of
Cauchy principal value). Then the instantaneous phase of
signal s(z) is

b(1) = arctaniz—g. (3)

To illustrate the method of neighborhood-based phase es-
timation (NPE), the following coupled nonidentical Rossler
systems [5] are taken as an example:

Xip=—wioyip—Zip+ Lo+ S(Xz,l —X1,2)9

Vip= WX 10+ @y,
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21,22,3+Zl,2(x1,2—7), (4)

where ,,=1%0.015, & is the coupling strength, ;,
~N(O,o-§), and o is the standard deviation of the dynamic
noise. Data are integrated from variables x,, using the
fourth-order Runge-Kutta method (Matlab function ode45)
with sampling interval Ar=0.2. The initial values are set ran-
domly, and 10 000 samples are adopted after the transient
state. The measured time series is denoted as s;,(nAr)
=x1 ,(nAr) +§ ,(nAt), where &, , is measurement noise, and
assumed to be Gaussian white noise §1y2~N(O,o'2l 2). To
simplify notation, At is omitted and s, ,(nAt) is written as
§1.2(n) from now on.

Given the time series {s(n)}ﬁ=l with L=10 000 samples,
the time delay vectors can be reconstructed by time delay
embedding [20], i.e., {s(2)}i_;,(o1)m

s(n)=[s(n—(d-1)7),s(n—(d-2)7), ...,s(n—7),s(n)]",

where d is embedding dimension, 7 is an integer number
which is use to indicate the amount of time delay (i.e., 7Az),
and (-)T denotes the transpose of a real matrix. The neigh-
borhood of the reference vector s(n) is defined as

N(n) = {s(k):[|s(k) =s(n)| < r,1 +(d-1)7=k =< L},
(5)

where r is the neighborhood radius. For the measured time
series {s(n)}, its Hilbert transform is denoted as {5(n)}. Cor-
responding to time delay vector (s(n)), the time delay vector
of (5(n)) is Sn)=[n-(d-1)7),5s(n-(d-2)7),...,5(n
—7),5(n)]". Note that §(n) is not calculated from s(z), but is
formed from {5(n)} by time delay embedding, and {5(n)} is
integrated in the whole time domain [Eq. (2)], while §(n) is
mainly contributed by the vicinity of s(n) in time.

Figure 1 illustrates the relationship between the reference
vector and its neighbors in the time domain and in the (s,5)
plane. It shows that the reference vector and its neighbors
cover segments of data with similar wave forms [Fig. 1(a)],
and thus their corresponding analytical trajectories of clean
data are close to each other [Fig. 1(b)]. However, the related
trajectories of noisy data appear irregularly [Fig. 1(c)], which
will yield artificial phase slips. To deal with this problem,
NPE is proposed as follows.

For reference vector s(n), the average of its neighbors is

=y 3

s(k)EN(n)

s(k), (6)
and the average of the related neighbors of §(n) is

=~ S

S(k):s(k)EN(n)

S(k), (7

where N=|N(n)| is the number of neighbors. Let 5@ (n)

=s(n)+/jS(n) denote the estimation of the analytical trajec-
tory of x(n), and s(n;i) denote the ith entry of s(n). Then
§@(n;i) is an estimation of the analytical signal at instant
[n—(d-i)7]At. As s(n) appears as an entry of s(/),l
=n,...,n+(d=1)7, there are d estimations of 59(n) at in-
stant nAr. It is difficult to say which estimation is the best, so
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FIG. 1. (Color online) The relationship between the reference
vector and its neighbors in the time domain (a) and in the (s,5)
plane [(b), (c), and (d)]. In this figure, the data are measured from
variable x, of the coherent Rossler systems [Eq. (4)], with param-
eters €=0.035, a=0.15, B=0.2, y=10, 0-51,2:()’ 0‘51'2:0.30}1‘2, T
=1, and d=80. Curve cl is the segment covered by the reference
vector s(n), and curves c2 and c3 are the segments covered by two
neighbors [s(k;) and s(k,)] of the reference vector, respectively.
Note that the neighbors are searched from noisy data, and the
smooth curves [i.e., x(n), x(k;), and x(k,)] are the clean versions of
the coarse curves, respectively. The analytical trajectories [i.e.,
x9(n), x'9(k), and x9(k,)] constructed from clean data are very
close to each other (b), while the corresponding trajectories
[s@(n), s“(k;), and s@(k,)] of the noisy version seem pell-mell
(c). The blue (dark gray) trajectory in (c), estimated by NPE, is
close to the corresponding trajectory [black, in (b)] of clean data.
For clarity, only the trajectories corresponding to the mid-half seg-
ments of the curves in (a) are plotted in (b) and (c), respectively. A
particular entry s“(n;i) (O) of s@(n), its clean version x“(n;i)
[O in (b) and (d)], its 20 noisy neighbors s@(k;i) (X), and the
average 5(n;i) of these 20 neighbors (@) are illustrated in (d).

the average of the estimations at the same instant is taken as
the final estimation of the analytical signal at this instant,
yielding the estimated analytical signal {5“(n)}, where

59(n)=5(n)+5(n). Then the instantaneous phase is estimated
as

d(n) = arctans:(—n). (8)
s(n)

B. Noise reduction by local projection

The local projection (LP) method has been studied exten-
sively [24-29]. Here only the basics of LP are reviewed. The
implementation details, extensions, and applications of this
method can be found in [26-29] and references therein.

The LP method assumes that the noise is white noise, and
thus the local phase space, i.e., the neighborhood N(n) of the
reference point s(n), can be divided into an M-dimensional
signal subspace and a (d—M)-dimensional noise subspace,

PHYSICAL REVIEW E 77, 046213 (2008)

where M is the minimum embedding dimension of the dy-
namical system. The signal subspace contains most of the
clean signal plus a certain, small, amount of the noise com-
ponents, while the noise subspace contains most of the noise
components. For a preset M, the noise subspace can be esti-
mated by minimizing the total energy that is distributed in it
because the energy of white noise is almost uniformly dis-
tributed on each direction of the local phase space. The mini-
mization turns out to be the standard eigenvalue decomposi-
tion for the covariance matrix C(n) of the neighborhood
N(n), i.e., C(n)u,—\u;=0, where the matrix C(n) is defined
as C(n)=1/NZypenmls(k)—s(n)][s(k)-s(n)]". Sorting the
eigenvalues A=diag(\;,\,,...,\,) in descending order, the
eigenvectors U;=[u,,...,u,] and U,=[u,,,,...,u,] span
the signal subspace and the noise subspace, respectively,
where u; is the eigenvector associated with the ith largest
eigenvalue. Then the phase vector s, can be decomposed as
s,=5(n)+U, U [s(n)—s(n)]+U,Uj[s(n)-5(n)] in the local
phase space, where UIUT[s(n)—§(n)] and U2U;[s(n)—§(n)]
are the projections of [s(n)—S(n)] in the signal subspace and
in the noise subspace, respectively. Eliminating U,U;[s(n)
—s(n)], the enhanced signal vector is obtained,

%(n) =8(n) + U, Uj[s(n) - 5(n)]. 9)

As each element of the time series {s(n)} appears as an entry
of one of d successive time delay vectors, s(l), [=n,...,n
+(d—1)7, there are d enhancements of entry s(n) which may
be different in value. The arithmetic mean over these values
is then taken as the enhanced element £(n).

After noise reduction, instantaneous phase can be ob-
tained from {£(n)} with the Hilbert transform. This scheme
just uses the LP method, instead of the traditional linear
bandpass filter, as a preprocessing filter to noisy data, and is
denoted by P-LP. It has been reported that the LP method is
more powerful than the linear bandpass method in reducing
noise for chaotic data [24,25,27].

II1. SIMULATION RESULTS
A. Phase synchronization of coupled Rossler systems

First, the proposed schemes are applied to data measured
from coupled coherent Rossler systems [Eq. (4)] with no
dynamic noise. The parameters are set as a=0.15, £=0.2,
vy=10, 0'41,2:0’ and O ,= M0y, where 7 is the level of
measurement noise.

Figure 2 illustrates the detection of phase synchronization
by the proposed schemes. Let P-HT denote the method that
phase is obtained by applying the Hilbert transform directly
to (noisy) data. It can be observed that when there is mea-
surement noise, the instantaneous phase difference (¢;— )
of the coupled systems [Eq. (4)], estimated by P-HT, fluctu-
ates irregularly [Fig. 2(a), “P-HT, #=0.5" and “P-HT, 7
=0.7"], and the wrapped phase difference AW, ,=(¢,
—¢,)mod(27) exhibits a much broader distribution com-
pared with that of the corresponding clean data [Figs. 2(c)
and 2(d) vs Fig. 2(b)]. This may mislead that the coupled
oscillators are nonsynchronous or weakly synchronous,
though the intrinsic oscillations are synchronous [Fig. 2(a),
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FIG. 2. (Color online) Phase synchronization of synchronous
Rossler systems (£=0.035). (a) The unwrapped phase difference of
systems (1, 2). (b)-(d) are the distributions P(AW,,) of the
wrapped phase difference of the cases =0 (i.e., clean), =0.5, and
17=0.7 by P-HT, respectively. () and (f) are the results of noisy data
(7=0.7) by NPE and P-LP (7=1, d=80, N=20, and M=5), respec-
tively. (g)—(i) are the power spectra of the clean data, noisy data
(7=0.7), and the real part {5(n)} of the estimated analytical signal
{5(n)} by NPE, respectively. Note that only the low frequency
region of the power spectra is plotted. The power spectra of the data
after noise reduction by LP are similar to that in (i), and are not
plotted.

“P-HT, 7=0"]. However, this misclassification can be
avoided by NPE and P-LP. The unwrapped phase difference
[Fig. 2(a), “NPE %=0.7"] estimated by the proposed
schemes is bounded around a constant, indicating phase syn-
chronization, and the corresponding distribution P(AW ,) of
the wrapped phase difference is almost as sharp as that of the
clean data [Figs. 2(e) and 2(f) vs Fig. 2(b)]. The power spec-
tra are also plotted for comparison. It shows that the subhar-
monics and subtle structures are buried by measurement
noise [Fig. 2(g) vs Fig. 2(h)], while NPE and LP can recover
most of them [Fig. 2(g) vs Fig. 2(i)]. If the narrow bandpass
filter is applied to noisy data, then all the out-band structures
will be removed.

The synchronization index p=(Spax—S)/Smax 1S used to
quantify the degree of phase synchronization in the coupled
systems, where S=—E£1Pi In P; is the entropy of the distri-
bution P(AW ), Syx=In K, and K is the number of bins of
distribution [5,11]. It is reported that overembedding [30]
(i.e., an embedding of excessively high dimension) may
yield better result of noise reduction by LP [29]. For NPE
and P-LP, an embedding of relatively higher dimension leads
to a closer estimation of synchronization index to that calcu-
lated from clean data [Fig. 3(a)], and relatively more neigh-
bors also yield a higher estimation of synchronization index
[Fig. 3(b)]. For data with higher noise level, a few more
neighbors may yield a little better results. For P-LP, simula-
tion results also show that the synchronization index p de-
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FIG. 3. (Color online) The estimated synchronization index p
with respect to embedding dimension [(a), N=20] and the number
of neighbors [(b), d=80] for synchronous Rossler systems (&
=0.035). Ten realizations of each case are calculated, and their
means and standard deviations are plotted. The results (not included
in this contribution for briefness) of similar simulations to the non-
synchronous Rossler systems (£=0.01) show that p increases very
slowly with the increase of the value of parameters d and N.

creases slowly (less than 6.2% for M from 3 to 10, when
7=0.7) with respect to the increase of dimension M of the
signal subspace space. Considering that the performances of
the proposed schemes are not very sensitive to the values of
parameters after they reach particular values, the parameters
are simply set as follows: 7=1, d=80, N=20, and M =5,
unless stated otherwise. More discussions on these param-
eters can be found in [21,27-29].

Figure 4 shows the results of the proposed schemes to
data with different noise levels. For both the synchronous
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FIG. 4. (Color online) The estimated synchronization index p
with respect to the level of measurement noise for the cases of
synchronous [(a), £=0.035], nearly synchronous [(b), £=0.027],
and nonsynchronous [(c), =0.01] states, which are with only mea-
surement noise, and the case that is also with dynamic noise [(d),
e=0.2, 0512:0.1]. Ten realizations of each case are calculated.
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[Fig. 4(a), £=0.035] and the nearly synchronous [Fig. 4(b),
£=0.027] Rossler systems, the synchronization indexes esti-
mated by P-HT descend quickly as the noise level increases,
which may mislead that the coupled systems are nonsynchro-
nous or weakly synchronous even though they are actually
synchronous. The synchronization indexes estimated with
the proposed schemes are more robust for noise, and are very
close to that calculated from clean data (=0), when the
noise level is not so high [Fig. 4(a), 7<<0.5]. For the non-
synchronous systems [Fig. 4(c), €=0.01], the synchroniza-
tion indexes estimated by the proposed schemes are also
close to that calculated from clean data. For these three
cases, the proposed schemes do not yield overestimation of
the degree of synchronization, and thus overcome the prob-
lem of overestimation that may arise from the linear band-
pass filter [11]. Note that the coupling strength of these three
cases are adopted from that used in [5].

Further, the proposed schemes are applied to data mea-
sured from coupled Rossler systems with dynamic noise. As
Fig. 4(d) indicates, the synchronization indexes estimated by
P-HT decrease quickly as the level of measurement noise
increases. What is more, when the level of measurement
noise is not so high (7=0.6), the indexes are overestimated
by NPE and P-LP, compared with the result of the case with
no measurement noise (7=0) by P-HT. This is because the
integrated data from systems with dynamic noise are not
smooth and appear to be noisy even with no measurement
noise. Both NPE and P-LP can reduce the effect of coarse-
ness in data, and thus overestimate the degree of phase syn-
chronization. The overestimation tends to fade off as the
level of dynamic noise decreases. One way to deal with data
with dynamic noise is the method of shadowing [31], which
yields a smooth shadowing trajectory that is close to the
coarse trajectory with dynamic noise. We conjecture that the
synchronization index estimated by P-HT from the shadow-
ing trajectory may be close to the indexes estimated by NPE
or P-LP from the coarse data with only dynamic noise (7
=0). Here, we do not discuss shadowing with more details
because it is not the focus of this contribution.

For the data measured from noncoherent systems (e.g.,
the funnel Rossler systems), the phase definition with the
Hilbert transform is not immediately applicable. One way to
deal with this problem is to define the instantaneous phase
based on the concept of curvature of an arbitrary curve
[3,10]. For any two-dimensional curve C;=(x,y) whose cur-
vature is positive, the curve C,=(x,y) cycles monotonically
around a fixed point, and the phase can be always defined as

b= arctan)—,] . (10)

X

The coupled funnel Réssler systems [Eq. (4), «=0.25, B
=0.2, y=10, and 0'51‘2:0] are studied with this phase defini-
tion. A smaller sampling interval Ar=0.05 is used, so that
more smooth derivatives [Eq. (10)] can be obtained, and
40 000 samples are measured after the transient state. Data
measured from variables x; , and y, , are all added with mea-
surement noise, i.e., 51 ,=x,+& , and s3 4=y, ,+&; 4, Where
£,~N(O, 7720')%1 ) &4~NO, ,720.}23 ) and 77 is the relative
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FIG. 5. Attractors of the Lorenz system reconstructed with (a)
clean Lorenz data in the (x,y) plane, (b) clean Lorenz data (=0) in
the (u,z) plane, (c) noisy Lorenz data (=0.3) in the (u,z) plane,
and (d) the corresponding enhanced Lorenz data in the (u,z) plane,
respectively.

level of measurement noise. The LP method [N=20, M =5,
7=4, and d=80, so that the length of the embedding window
(d—1)7Ar is almost equal to that used for the case of coher-
ent Rossler systems] is applied to all the noisy data {s;,3 4}
separately, yielding the estimation of {x,,} and {y;,}, i.e.,
{%1 2} and {y; ,}. Then the phases of systems (1, 2) are esti-
mated via Eq. (10) with {X, ,} and {y, »}, respectively. Simu-
lation results show that some degree of phase synchroniza-
tion can be detected from data (actually synchronous) when
the level of measurement noise is small (7<<0.1). This is
because the derivative [Eq. (10)] is very sensitive to noise.
So the phase definition Eq. (10) seems not to be a robust
measure for detecting phase synchronization in noisy data.
One possible method is statistical measure of recurrences
introduced recently [3]; but this method cannot indicate the
degree of synchronization in local time.

B. Phase synchronization of coupled Lorenz systems

In this section, the LP method is applied as a preprocess-
ing tool in detecting phase synchronization of the data from
coupled Lorenz systems,

Xip= 10()’1,2—)51,2) + 8()Cz,l —xl,z),

V2= (r1,2_Z1,2)x1,2_yl,29

. 8
Q2= Y12 T 32 (11)
where r =28, r,=28.02, and £=3.8 is the coupling strength.
Ten-thousand samples are measured with sampling interval
Ar=0.04. In the (x,y) plane, the Lorenz attractor has two
rotation centers [Fig. 5(a)], and the definition of phase with
the Hilbert transform is not applicable. Considering the sym-
metry of Lorenz attractor, the phase of the Lorenz oscillator
can be defined with its projection on the (u,z) plane,
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FIG. 6. (Color online) (a) The unwrapped phase difference of
coupled Lorenz systems, and (b) their synchronization index p (ten
realizations of each case) with respect to the level of measurement
noise. P-PP denotes the results that the phase is defined in the pro-
jection plane [Eq. (12)] with no filtering to noisy data.

Z—2
¢ = arctan s
u-— MO

(12)

where u=\x>+y?, uy=12, and z,=27 [9].

In the (u,z) plane, the attractor constructed with clean
data [Fig. 5(b)] rotates around one center (u,z). Measure-
ment noise, & ,~N(0, nzaﬁm), &4~N(O, 172051 2), are
added to u;, and z; ,, respectively. It can be observed that
the attractor, distorted by noise [Fig. 5(c)], is almost recov-
ered [Fig. 5(d)] after noise reduction by the LP method (N
=20, M=5, 7=1, and d=80). Note that the unwrapped phase
difference fluctuates intensely [Fig. 6(a), “P-PP, #=0.5" and
“P-PP, »=0.7"] due to measurement noise, though the sys-
tems are intrinsically synchronous [Fig. 6(a), “P-PP, =0"].
However, these fluctuations can be greatly reduced by apply-
ing the LP method, resulting in long epoches of phase lock-
ing [Fig. 6(a), “P-LP, #=0.5" and “P-LP, #=0.7"]. Thus the
degree of phase synchronization can be detected reliably
from noisy data, which is more clearly demonstrated as the
results summarized in Fig. 6(b).

In comparison with the LP method, the effect of bandpass
filter in detecting phase synchronization is studied. The
Gaussian envelop filter, introduced in [32], is applied to
noisy data u, , and z; ,, respectively, and then the instanta-
neous phase is computed via Eq. (12) with the output of the
filter. As Fig. 7 illustrates, this scheme, denoted as PBP, is
sensitive to the band width (Af) of the filter, and may over-
estimate the degree of synchronization even when the data is
clean (P-PP, =0).

IV. CONCLUSIONS AND DISCUSSIONS

Two schemes are proposed to detect phase synchroniza-
tion from chaotic data contaminated by noise. One is the

where the most energetic spectra of the Lorenz data are located
around. Other details about the filter can be found in [32].

method of neighborhood-based phase estimation (NPE), the
other adopts the local projection (LP) method as a prepro-
cessing filter for noisy data. They are applied to data mea-
sured from two typical chaotic systems, i.e., the coupled
Rossler systems and the coupled Lorenz systems. Simulation
results show that the estimated instantaneous phase suffers
much less from artificial phase slips caused by noise, and
thus the degree of phase synchronization can be reliably de-
tected even when the noise level is relatively high, avoiding
the overestimation that may be introduced by the traditional
linear bandpass filter. For the data with dynamic noise as
well, overestimation may be introduced when the measure-
ment noise level is not so high because the data measured
from systems with dynamic noise are coarse even when there
is no measurement noise. This overestimation tends to de-
crease as the level of dynamic noise decreases.

State recurrence is one important feature of chaotic sys-
tems. As discussed in the Introduction, it has been utilized in
analyzing and processing various theoretical and experimen-
tal systems. Actually, nonlinear interdependence [14—-16] and
the statistical measure of recurrences [3] both utilize the idea
of state recurrence defined by time delay embedding. Using
the framework of localized sets [19], the typical events de-
fined in those localized sets can also be considered as gen-
eralized “recurrences.” The difference is that these “recur-
rences” are defined in a more general way (e.g., by the
intersection of the trajectory with a local plane) rather than
by the spatial nearness of vectors in the space reconstructed
by time delay embedding.

Both schemes proposed in this contribution utilize the re-
dundant information of state recurrences of chaotic data. The
difference is that NPE estimates the instantaneous phase di-
rectly by averaging the analytical trajectories of neighbors,
bridging time delay embedding to instantaneous phase esti-
mation; while the scheme incorporating LP estimates the in-
stantaneous phase from data after noise reduction. In the pro-
posed schemes, the recurrences (i.e., neighbors) are defined
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in the overembedded phase space (i.e., with long embedding
window). Thus on the one hand, the recurrences collected
from noisy data are more likely to be true recurrences (the
recurrences collected form clean data are considered as true
recurrences here); on the other hand, the proposed schemes
may not be suitable for spiking and/or bursting neurons be-
cause spikes will dominate in collecting recurrences. It is
difficult to design a method which is both robust to noise and
applicable to various data. Usually, methods focus on just

PHYSICAL REVIEW E 77, 046213 (2008)

one point, the proposed schemes in this contribution focus on
robustness.
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